Trematode infection causes malformations and population effects in a declining New Zealand fish.

نویسندگان

  • David W Kelly
  • Harriet Thomas
  • David W Thieltges
  • Robert Poulin
  • Daniel M Tompkins
چکیده

1. Animal malformations engender wide public and scientific concern because of associated environmental health risks. This is highlighted by increased incidence of limb malformations in amphibians associated with trematode infections and disturbance. Malformations may signal new emerging disease threats, but whether the phenomenon is broadly applicable across taxa, or has population-scale impacts, is unknown. 2. Malformations are widely reported in fish and, until now, have been attributed mainly to contaminants. We tested whether the trematode Telogaster opisthorchis caused severe malformations, leading to population effects, in Galaxias anomalus, a threatened New Zealand freshwater fish. 3. Experimental infection of larval fish caused increasing spinal malformation and mortality with infection intensity that closely matched field patterns. Field malformation frequency peaked in January (65%), before declining sharply in February (25%) and remaining low thereafter. 4. The peak occurred during a 'critical window' of larval development, with the decline coincident with a population crash, indicating that malformation was causing mortality in the field. 5. The occurrence of such critical developmental windows may explain why this mechanism of population impact has been overlooked. With global environmental stressors predicted to enhance trematode infections, our results show that parasite-induced malformation, and its population-scale impacts, could be more widespread than previously considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equal partnership: two trematode species, not one, manipulate the burrowing behaviour of the New Zealand cockle, Austrovenus stutchburyi.

Metacercariae of the trematode Curtuteria australis (Echinostomatidae) accumulate in the foot of the New Zealand cockle Austrovenus stutchburyi, severely impairing the cockle's ability to burrow under the sediments. This results in increased predation by birds on cockles, and thus enhanced transmission rates of the parasite to its bird definitive hosts. This host manipulation by the trematode i...

متن کامل

Equal partnership: two trematode species, not one, manipulate the burrowing behaviour of the New Zealand cockle, <i>Austrovenus stutchburyi</i>

Metacercariae of the trematode Curtuteria australis (Echinostomatidae) accumulate in the foot of the New Zealand cockle Austrovenus stutchburyi, severely impairing the cockle’s ability to burrow under the sediments. This results in increased predation by birds on cockles, and thus enhanced transmission rates of the parasite to its bird definitive hosts. This host manipulation by the trematode i...

متن کامل

Synergistic effects of glyphosate formulation and parasite infection on fish malformations and survival

1. Anthropogenic pollution and disease can cause both lethal and sub-lethal effects in aquatic species but our understanding of how these stressors interact is often not known. Contaminants can reduce host resistance to disease, but whether hosts are impacted at environmentally relevant concentrations is poorly understood. 2. We investigated the independent and combined effects of exposure to t...

متن کامل

Local diversity reduces infection risk across multiple freshwater hostparasite associations

1. In many host–parasite systems, infection risk can be reduced by high local biodiversity, though the mitigating effects of diversity are context dependent and not universal. 2. In aquatic ecosystems, local fauna can reduce the transmission success of parasite free-swimming infective stages by preying on them, acting as decoy hosts, or physically interfering with transmission. However, most pr...

متن کامل

Upstream-downstream gradient in infection levels by fish parasites: a common river pattern?

Physical habitat structure can influence the distribution and abundance of organisms. In rivers, stream drift, a common process originating from the unidirectional water flow, favours the displacement and downstream dispersion of invertebrates. This process could also generate a gradient in infection levels, leading to decreasing numbers of parasites per host as one moves upstream from the rive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of animal ecology

دوره 79 2  شماره 

صفحات  -

تاریخ انتشار 2010